384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

DESCRIPTION

The μ PD16716 is a source driver for TFT-LCDs capable of dealing with displays with 64 -gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ-corrected by an internal D / A converter and 5 -by- 2 external power modules. Because the output dynamic range is as large as $\mathrm{V}_{\mathrm{ss}}+0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 2}-0.1 \mathrm{~V}$, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 70 MHz when driving at $3.0 \mathrm{~V}, 45 \mathrm{MHz}$ when driving at 2.5 V , this driver is applicable to XGA/SXGA-standard TFT-LCD panels.

FEATURES

- CMOS level input (2.5 to 3.6 V)
- 384 Outputs
- Input of 6 bits (gray scale data) by 6 dots
- Capable of outputting 64 values by means of 5 -by-2 external power modules (10 units) and a D/A converter (RDAC)
- Logic power supply voltage (VDD1) : 2.5 to 3.6 V
- Driver power supply voltage (VDD2) : $15.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
- Output dynamic range $\mathrm{V}_{\mathrm{s} 2}+0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 2}-0.1 \mathrm{~V}$
- High-speed data transfer: $f c L K=70 \mathrm{MHz}$ (internal data transfer speed when operating at VDD1 $=3.0 \mathrm{~V}$),

45 MHz (internal data transfer speed when operating at $\mathrm{V} D \mathrm{D} 1=2.5 \mathrm{~V}$)

- Apply for dot-line inversion, n-line inversion and column line inversion
- Output Voltage polarity inversion function (POL)
- Display data inversion function (capable of controlling by each input port) (POL21, POL22)
- Low power control function (LPC)

ORDERING INFORMATION

Part Number	Package
μ PD16716N $-\times \times \times$	TCP (TAB package)

Remark The TCP's external shape is customized. To order your TCP's external shape, please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (μ PD16716N-xxx) (Copper Foil Surface, Face-up)

Remark This figure does not specify the TCP package.

4. PIN FUNCTIONS

Pin Symbol	Pin Name	I/O	Description
S_{1} to S_{384}	Driver	0	The D/A converted 64-gray-scale analog voltage is output.
D00 to D05	Display data	I	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). Dxo: LSB, Dx5: MSB
D_{10} to D_{15}			
D_{20} to D_{25}			
D_{30} to D35			
D40 to D45			
D_{50} to D55			
R,/L	Shift direction control	I	Refers to the shift direction control. The shift directions of the shift registers are as follows. $R, / L=H: S T H R$ input, $S_{1} \rightarrow S_{384}$, STHL output $R, / L=L: S T H L$ input, $\mathrm{S}_{384} \rightarrow \mathrm{~S}_{1}$, STHR output
STHR	Right shift start pulse	I/O	These refer to the start pulse I/O pins when driver ICs are connected in cascade. Loading of display data starts when H is read at the rising edge of CLK. $\mathrm{R}, \mathrm{L}=\mathrm{H}$ (right shift): STHR input, STHL output
STHL	Left shift start pulse	I/O	R,/L = L (left shift): STHL input, STHR output A high level should be input as the pulse of one cycle of the clock signal. If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is valid.
CLK	Shift clock	1	Refers to the shift register's shift clock input. The display data is loaded into the data register at the rising edge. At the rising edge of the 64th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If 66 -clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge.
STB	Latch	1	The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity	1	$\mathrm{POL}=\mathrm{L}$: The $\mathrm{S}_{2 n-1}$ output uses V_{0} to V_{4} as the reference supply. The $\mathrm{S}_{2 n}$ output uses V_{5} to V_{9} as the reference supply. $\mathrm{POL}=\mathrm{H}$: The $\mathrm{S}_{2 n-1}$ output uses V_{5} to V_{9} as the reference supply. The $\mathrm{S}_{2 n}$ output uses V_{0} to V_{4} as the reference supply. $\mathrm{S}_{2 n-1}$ indicates the odd output: and $\mathrm{S}_{2 n}$ indicates the even output. Input of the POL signal is allowed the setup time (tpol-sтв) with respect to STB's rising edge.
POL21, POL22	Data inversion	1	Data inversion can invert when display data is loaded. POL21: Invert/not invert of display data D_{00} to $\mathrm{D}_{05}, \mathrm{D}_{10}$ to $\mathrm{D}_{15}, \mathrm{D}_{20}$ to D_{25}. POL22: Invert/not invert of display data D_{30} to D_{35}, D_{40} to D_{45}, D_{50} to D_{55}. POL21, POL22 = H: Display data is inverted. POL21, POL22 = L : Display data is not inverted.
LPC	Low power control	I	The current consumption is lowered by controlling the constant current source of the output amplifier. This pin is pulled up to the VDD1 power supply inside the IC. In low power mode (LPC = L), the static current consumption of Vod2 reduced to about $2 / 3$ of the normal current consumption. LPC = H or Open : Normal power mode LPC = L : Low power mode

Pin Symbol	Pin Name	I / O	Description
V_{0} to V_{9}	γ-corrected power supplies	-	Input the γ-corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $\mathrm{V}_{\mathrm{DD} 2}-0.1 \mathrm{~V} \geq \mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4} \geq 0.5 \mathrm{~V}_{\mathrm{DD} 2} \geq \mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9} \geq \mathrm{V}_{\mathrm{SS} 2}+$ 0.1 V
$\mathrm{~V}_{\mathrm{DD} 1}$	Logic power supply	-	2.5 V to 3.6 V
$\mathrm{~V}_{\mathrm{DD} 2}$	Driver power supply	-	$15.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{SS} 1}$	Logic ground	-	Grounding
$\mathrm{V}_{\mathrm{SS} 2}$	Driver ground	-	Grounding

Cautions 1. The power start sequence must be $V_{d D 1}$, logic input, and $V_{d D 2} \& V_{0}$ to V_{9} in that order.
Reverse this sequence to shut down. (Simultaneous power application to VdD2 and V_{0} to V_{9} is possible.)
2. To stabilize the supply voltage, please be sure to insert a $0.1 \mu \mathrm{~F}$ bypass capacitor between $\mathrm{V}_{\mathrm{DD} 1}-\mathrm{V}_{\mathrm{SS} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}-\mathrm{V}_{\mathrm{SS} 2}$. Furthermore, for increased precision of the D / A converter, insertion of a bypass capacitor of about $0.01 \mu \mathrm{~F}$ is also advised between the γ-corrected power supply terminals ($\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \cdots, \mathrm{~V}_{9}$) and $\mathrm{V}_{\mathrm{ss} 2}$.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ-compensated voltages to $\mathrm{V}_{0}{ }^{\prime}$ to $\mathrm{V}_{63}{ }^{\prime}$ and V_{0} " to V_{63} " is almost equivalent. For the 2 sets of five γ-compensated power supplies, V_{0} to V_{4} and V_{5} to V_{9}, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine-gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ-compensated power supplies V_{1} to V_{3} and V_{6} to V_{8}.

Figure 5-1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VdD2 and Vss2, common electrode potential $\mathrm{V}^{\text {сом }}$, and γ-corrected voltages V_{0} to V_{9} and the input data. Be sure to maintain the voltage relationships as follows:
$V_{\text {DD2 }}-0.1 \mathrm{~V} \geq \mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4} \geq 0.5 \mathrm{~V}_{\mathrm{DD} 2} \geq \mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9} \geq \mathrm{V}_{\mathrm{SS} 2}+0.1 \mathrm{~V}$.
Figures 5-2 and 5-3 show the relationship between input data and output voltage. This driver IC is designed for only single-sided mounting

Figure 5-1. Relationship between Input Data and $\boldsymbol{\gamma}$ - corrected Power Supply

Figure 5-2. Relationship between Input Data and Output voltage
$V_{\text {DD2 }}-0.1 \mathrm{~V} \geq \mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4} \geq 0.5 \mathrm{~V}_{\mathrm{DD} 2}$, POL21, POL22 $=\mathrm{L}$

Caution There is no connection between V_{4} and V_{5} terminal in the chip.

Figure 5-3. Relationship between Input Data and Output voltage
$0.5 \mathrm{~V}_{\mathrm{DD} 2} \geq \mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9} \geq \mathrm{V}_{\mathrm{ss} 2}+0.1 \mathrm{~V}$, POL21, POL22 $=\mathrm{L}$

Caution There is no connection between V_{4} and V_{5} terminal in the chip.

6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits $\times 2$ RGBs (6 dots)
Input width: 36 bits (2-pixel data)

R,/L = H (Right shift)

Output	S_{1}	S_{2}	S_{3}	S_{4}	\ldots	S_{383}	S_{384}
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{30} to D_{35}	\ldots	D_{40} to D_{45}	D_{50} to D_{55}

$R, / L=L$ (Left shift)

Output	S_{1}	S_{2}	S_{3}	S_{4}	\ldots	S_{383}	S_{384}
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{30} to D_{35}	\ldots	D_{40} to D_{45}	D_{50} to D_{55}

POL	$\mathrm{S}_{2 n-1}$ Note	$\mathrm{S}_{2 n}$ Note
L	V_{0} to V_{4}	$\mathrm{~V}_{5}$ to V_{9}
H	V_{5} to V_{9}	$\mathrm{~V}_{0}$ to V_{4}

Note $\mathrm{S}_{2 n-1}$ (Odd output), $\mathrm{S}_{2 n}$ (Even output)

7. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

8. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

Figure 8-1. Output Circuit Block Diagram

Figure 8-2. Output Circuit Timing Waveform

Remarks 1. $\mathrm{STB}=\mathrm{L}: \mathrm{SW} 1=\mathrm{ON}$
$\mathrm{STB}=\mathrm{H}: \mathrm{SW} 1=\mathrm{OFF}$
2. $\mathrm{STB}=$ " H " is acknowledged at timing [1].
3. The display data latch is completed at timing [2] and the input voltage (VAMP(IN) : gray-scale level voltage) of the output amplifier changes.

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	VDD1	-0.5 to +4.0	V
Driver Part Supply Voltage	VDD2	-0.5 to +17.0	V
Logic Part Input Voltage	V_{11}	-0.5 to $\mathrm{VDD1}^{+}+0.5$	V
Driver Part Input Voltage	V_{12}	-0.5 to VDD2 +0.5	V
Logic Part Output Voltage	Vo1	-0.5 to $\mathrm{VDD1}^{+} 0.5$	V
Driver Part Output Voltage	Vo2	-0.5 to V DD2 +0.5	V
Operating Ambient Temperature	TA	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathbf{0 ~ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	VDD1		2.5		3.6	V
Driver Part Supply Voltage	VDD2		14.5	15.0	15.5	V
High-Level Input Voltage	V_{IH}		$0.7 \mathrm{VDD1}$		VDD1	V
Low-Level Input Voltage	VIL		0		0.3 V ${ }^{\text {d } 1}$	V
γ-Corrected Voltage	V_{0} to V_{9}		$\mathrm{Vss2}+0.1$		VDD2 - 0.1	V
Driver Part Output Voltage	Vo		$V \mathrm{ss2}+0.1$		VDD2 - 0.1	V
Clock Frequency	fclk	$\mathrm{V}_{\text {DD1 }}=3.0 \mathrm{~V}$			70	MHz
		$\mathrm{V}_{\mathrm{DD} 1}=2.5 \mathrm{~V}$			45	MHz

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD} 1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=15.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss}_{1}=\mathrm{Vss}_{2}=0 \mathrm{~V}$, Unless otherwise specified, power mode = normal, Bcont = open)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input Leak Current	IIL					± 1.0	$\mu \mathrm{A}$
High-Level Output Voltage	Vor	STHR (STHL), $\mathrm{loh}=0 \mathrm{~mA}$		$V_{\text {DD1 } 1-0.1 ~}^{\text {d }}$			V
Low-Level Output Voltage	Vol	STHR (STHL), lol $=0 \mathrm{~mA}$				0.1	V
γ-Corrected Supply Current	${ }_{\gamma}$	$\begin{aligned} & V_{\text {DD2 }}=15.0 \mathrm{~V} \\ & V_{0} \text { to } V_{4}=V_{5} \text { to } V_{9} \\ & =7.5 \mathrm{~V} \end{aligned}$	V_{0} pin, V_{5} pin	200		800	$\mu \mathrm{A}$
			$\mathrm{V}_{4} \mathrm{pin}, \mathrm{V}_{9} \mathrm{pin}$	-800		-200	$\mu \mathrm{A}$
Driver Output Current	Ivoh	$\mathrm{Vx}=14.0 \mathrm{~V}$, Vout $=13.5 \mathrm{~V}$			-75	-30	$\mu \mathrm{A}$
	Ivol	$\mathrm{V} x=1.0 \mathrm{~V}$, Vout $=1.5 \mathrm{~V}$		30	90		$\mu \mathrm{A}$
Output Voltage Deviation	$\Delta \mathrm{V}$ o	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Vout $=3.0 \mathrm{~V}, 7.5 \mathrm{~V}, 12.0 \mathrm{~V}$			± 10	± 20	mV
Output swing difference deviation	$\Delta \mathrm{VPPP} 1$	$\begin{aligned} & V_{D D 1}=3.3 \mathrm{~V}, \\ & V_{D D 2}=15.0 \mathrm{~V}, \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	Vout $=7.0$ to 8.0 V		± 5	± 10	mV
	$\Delta \mathrm{VP-P2}$		Vout $=1.6$ to 12.8 V		± 7	± 13	mV
	$\Delta \mathrm{VP}_{\text {P-P3 }}$		Vout $=1.0$ to 14.0 V		± 10	± 20	mV
Logic Part Dynamic Current Consumption	IDD1	VDD1			5	12	mA
Driver Part Dynamic Current Consumption	IDD2	VDD2, with no load			8	16	mA

Cautions 1. f ттв $=\mathbf{6 4} \mathbf{~ k H z}$, fclк $=\mathbf{5 4} \mathbf{~ M H z}$.

2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
3. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (8 units).
\star Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{dD} 2}=15.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$, Unless otherwise specified, power mode = normal, Bcont = open)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	tPLH1	$\mathrm{CL}=15 \mathrm{pF}$			12	ns
Driver Output Delay Time	tPLH2	$\mathrm{CL}=83 \mathrm{pF}, \mathrm{RL}=40 \mathrm{k} \Omega$			6	$\mu \mathrm{s}$
	tpLH3 ${ }^{\text {Note }}$				12	$\mu \mathrm{s}$
	tPHL2				7	$\mu \mathrm{s}$
	tphli ${ }^{\text {Note }}$				12	$\mu \mathrm{s}$
Input Capacitance	Cl_{11}	STHR (STHL) excluded, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	10	pF
	Cl_{12}	STHR (STHL), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	15	pF

Note tрLнз/tрнцз are specified as the time it takes to reach the target voltage $\pm 2 \%$.
<Measurement Condition>

Timing Requirement ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD1}=2.5$ to $3.6 \mathrm{~V}, \mathrm{Vss} 1=0 \mathrm{~V}, \mathrm{tr}_{\mathrm{tr}}=\mathrm{tf}_{\mathrm{f}}=5.0 \mathrm{~ns}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk	VDD1 $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	14			ns
		VDD1 $=2.5$ to 3.0 V	22			ns
Clock Pulse High Period	PWCLK(H)		4			ns
Clock Pulse Low Period	PWCLK(L)		4			ns
Data Setup Time	tsetup1		2			ns
Data Hold Time	thold 1		2			ns
Start Pulse Setup Time	tsetup?		2			ns
Start Pulse Hold Time	thold2		2			ns
POL21, POL22 Setup Time	tsetup 3		2			ns
POL21, POL22 Hold Time	thold3		2			ns
STB Pulse Width	PWstв		1.5			$\mu \mathrm{s}$
Last Data Timing	tıd		2			CLK
CLK-STB Time	tclk-stb	CLK $\uparrow \rightarrow$ STB \uparrow	4			ns
STB-CLK Time	tstb-clk	STB $\uparrow \rightarrow$ CLK \uparrow	4			ns
Time between STB and Start Pulse	tstb-sth	STB $\uparrow \rightarrow$ STHR (STHL) \uparrow	2			CLK
POL-STB Time	tPOL-STB	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB-POL Time	tstb-poL	STB $\downarrow \rightarrow$ POL \downarrow or \uparrow	4			ns

Remark Unless otherwise specified, the input level is defined to be $\mathrm{V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD} 1}$.

Switching Characteristics Waveform

Unless otherwise specified, the input level is defined to be $\mathrm{V}_{I H}=0.7 \mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{I L}=0.3 \mathrm{~V} D \mathrm{~V} 1$.

10. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the μ PD16716.
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).
Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.
μ PD16716N-××x : TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to $350^{\circ} \mathrm{C}$: heating for 2 to 3 seconds: pressure 100 g (per solder)
	ACF (Adhesive Conductive Film)	Temporary bonding 70 to $100^{\circ} \mathrm{C}$: pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}$: time 3 to 5 seconds. Real bonding 165 to $180^{\circ} \mathrm{C}$: pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}:$ time 30 to 40 seconds. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.
[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability / Quality Control System (C10983E)
 Quality Grades to NEC's Semiconductor Devices (C11531E)

- The information in this document is current as of May, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

